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Outline of the tutorial

® Part 1 — Soft constraints: models
Francesca Rossi

o Part 2 — Soft constraints: algorithms
Pedro Meseguer

s Systematic search
s Local search
s Approximation methods
# Part 3 — Soft constraints: applications
Thomas Schiex

s RNA secondary structure prediction
s satellite scheduling

o NnCy assignment
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PART 1 — Soft Constraints: Models

# Motivation
#® Examples of soft problems in real-life

#® Specific soft CSP models: fuzzy, lexicographic,
weighted, probabilistic CSPs

#® Generic soft CSP models: hierarchical, partial,
valued, semiring-based CSPs, instances

#® Soft temporal CSPs
# Soft constraint propagation
# Global and local preferences
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Motivations for soft constraints

# Hard constraint problems (CSPs):
s Variables over finite domains
s constraints: tuples of domain values are either
allowed or not
#® Most real-life situations need fuzziness,
possibilities, preferences, probabilities, costs, ...:
s Over-constrained problems

s Problems with both preferences and hard
statements, and/or uncertainties

s Optimization problems (also multi-criteria)

# Soft constraints: preferences rather than strict
requirements (a tuple or constraint has a level of
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10.dO

Time-tabling problems -

® Hard constraints:

number of rooms and courses
estimated audience for each course
size of each room

number of lectures every week

a professor cannot teach two lectures at the
same time

o o o o o

# Soft constraints (preferences):
s different days for different lectures
s teachers’ preferences over days and times
s order of the lectures of different courses
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A fuzzy problem :

® To decide what to eat for dinner at a restaurant

# Preferences (for example integers) over
combinations of drinks and dishes:

s water and meat: 0.4, red wine and meat: 0.7
# Preferences also over the type of dish (and drink):

o fish: 0.8, meat: 0.3
o water: 0.7, red wine: 0.8, white wine: 1

# Goal: to find a combination which maximizes the
overall preference (min, conjunctive fuzzy problem)

# meat and red wine: 0.3 = min(0.3,0.7,0.8)
meat and water: 0.3 = min(0.3,0.4,0.7)




A hierarchical problem

# Place some pieces of furniture in an office

# Some most important constraints:
s chair close to the table

# Medium-importance constraints:
s computer not Iin front of the window

# Not-so-important constraints:
s window visible from the chair

o Goal: find a solution which satisfies the highest
number of constraints, with precedence to the more
Important ones




10.dO

Temporal preferences -

# Many events to be scheduled over the time line

# Constraints give ranges for their duration and
distance

# Each element in a range has a level of preference:

s to minimize the delay, a decreasing preference
function over the distance range

o Goal: find a most preferred scheduling of the events
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Specific soft CSP models -

® Fuzzy CSPs

# Lexicographic CSPs
#» Weighted CSPs

# Probabilistic CSPs




Fuzzy CSPs

# A preference level to each tuple of values, between
O (worst value) and 1 (best value)

# Value associated with a complete instantiation: the
minimum of the values of all its subtuples

# Best solution = complete instantiation with
maximum value

Solutions:
@ /y\ @ aaa... ml_n(0,0.3) =0
N aab..min(0,01)=0 Best solutions:
aa..0 aa..03 aba..min(1,1) =1 aba.. 1
ab..1  ab..01 abb..min(1,1) =1 abb .1
ba..05 ba..1 baa... min(0.5,0.3) = 0.3
bb..07 bb..1 bab ... min(0.5,0.1) = 0.1

bba...min(0.7,1) = 0.7
bbb..min(0.7,1) =0.7

Dubolis, Fargier, Prade, IEEE Fuzzy Systems 1993; Ruttkay, Fuzzy
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Weighted CSPs :

# Each tuple of values, or constraint, has a cost

#® Cost of a complete assignment: sum of costs of all
tuples

® Goal: to minimize the overall cost

o Max-CSPs:

s weighted CSPs where each constraint has a
weight O If satisfied, and 1 if violated

s weigth of a complete assignment: number of
violated constraints

s goal: to minimize the number of violated
constraints




Lexicographic CSPs

# Combination of weighted and fuzzy CSPs

# Value of a solution:
s not just the min

s It depends also on the number of violated
constraints at each preference level

#® Multiset of preferences in [0,1], combined via
multiset union

# Lexicographic order to compare solutions

o Example: meat and water: (0.3,0.4,0.7)
meat and red wine: (0.3,0.7,0.8) = better!

Fargier, Lang, Schiex, EUFIT 1993
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Probabilistic CSPs -

# To reason about problems which are only partially
known

# Each constraint ¢ has a certain independent
probability p(c) to be part of the given real problem

# Value of a complete instantiation ¢: probability that
It Is a solution of the real problem = product of all
1 — p(c) for all ¢ violated by ¢, 1 otherwise

# We want the instantiation with the maximum
probability

H. Fargier, J. Lang, ECSQARU 1993




Generic soft CSP models

# Originally for over-constrained CSPs:

s hierarchical CSPs: hierarchy of importance for
constraints

s partial CSPs: only some constraints are satisfied

o For soft CSPs:

s Valued CSPs
s preference: impact for a constraint violation
s best solutions: minimum global preference

s Semiring-based CSPs
s preference: likeness for a tuple (a way to
satisfy a constraint)
s best solutions: best preference
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Hierarchical CSPs -

# A strength level for each constraint (ordered:
required, strong, weak, ...)

# Find the solutions which satisfy all required
constraints and the other constraints as much as
possible

# Pre-defined comparators on solutions

# Example: we move with the mouse one endpoint of
a horizontal line in a window

s required: the line must remain horizontal and
must not exit the window

s Strong: the endpoint must follow the mouse



Partial CSPs

# When not all constraints can be satisfied, a solution
satisfies only some of them
# Metric to choose among solutions:
s example: count the difference in the number of
constraints
# Example: 3-queen problem (unsolvable)
s diagonal attack = constraint enlarging
s expand to a 4x3 grid = domain enlarging

# Goal: to solve a problem which is closest to the
original one, according to the metric

E. Freuder, R. Wallace, Al Journal, 1992.




Valued CSPs

# Valuations belong to a totally ordered set
(commutative monoid):

s minimum (best) element L
s oOperation x to combine valuations

® Global valuation: combines the valuations of all the
constraints violated by it

#® Goal: assignment with a minimum valuation

aa ab

aab.. L
vl v2 abb.. .
aba..v2
bab...v1l

bba..vl[v2
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Semiring-based CSPs

#® A set of preferences A to be associated to tuples of

values in each constraint
# an operation x to combine t

ne preferences

# an operation + to compare the preferences =

partial order: a < b iff a+b =
® (A +,x%,0,1) Is a semiring
#® C-semiring: semiring plus

0 (b IS better than a)

s + Idempotent (to get a partial order over A)

s X commutative
o a+1=1

Bistarelli, Montanari, Rossi, IJCAI 1995, JACM 1997
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Differences between VCSPs and SCSPs

® Preferences to

s tuples (semiring-based CSPs)
s constraints (valued CSPs)

# Order of the preferences:
s total (valued CSPs)
s partial (semiring-based CSPs)




Preference to constraints or to tuples

# From tuples to constraints:

Vv
ab..0
ba..O
bb..v

Bistarelli, Fargier et al., LNCS 1106, 1996
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When a partial order is useful

#® Set-based CSPs:
s preferences are sets of elements
s combined via intersection, compared via union
s C-semiring St = (p(A),U,N, 0, A)
— order = set inclusion
#® Multi-criteria CSPs:
s one S; = (A;, +;, X;, 04, 1;) for each criteria
s ((A1,...,An), 4+, X,{(017,...,0n),(11...1p))

s + and x obtained by pointwise application of +;
and x, on each S;

s Partial order even if all criteria totally ordered




Instances of SCSPs and VCSPs

o o o ©

CSPs: semiring ({ false, true}, Vv, A, false, true)
Fuzzy CSPs: (|0, 1], max, min, 0, 1):
Probabilistic CSPs: ([0, 1], mazx, x,0,1)
Weighted CSPs: (R, min, +, +o0, 0)




10.dO

Soft temporal CSPs :

#® Temporal constraints as intervals: a < X - Y <b
# A preference for each element in the interval

# Choice of a specific semiring: combination and
comparison of preferences via x and +

# Hard temporal CSPs are tractable if one interval
per constraint (Dechter)

# Soft temporal CSPs are tractable if
s one interval per constraint
s preferences with at most one local maximum
s (Idempotent x If we use path-consistency)

Khatib et al. IJCAI 2001 ‘soft TCSPs solver)



Combination and Projection

o Constraint ¢ = {def, con)
s def: association tuples-preferences
s con: set of variables

# Projection: ¢ |};= (def’, I N con), where

def'(t') = Xgyjpyeon _ppdef(t)

MNcon

#® Combination: ¢; ® co = (def, coni U cons), Where

def(t) = defi(t leon,) X defa(t dcon,)

® Examples:
s CSPs: logical or, logical and

s fuzzy CSPs: max, min
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Soft constraint propagation

# For hard CSPs: to eliminate inconsistencies prior or
during the search

# For soft CSPs: to get more "realistic” preferences
= tighter bounds during the search for an optimal
solution

o (' Is k-consistent if, for all subsets of k vars W and
any other var z: ®{c¢; | ¢; € C Acon; CW} =
(®{c; | ci e CAcony CWU{z})}) Iw

# Considering only the constraints in W Is the same

as considering all those in W, plus those
connecting z to W, and then projecting over W/




Soft arc consistency

® £E=2 W = {y}:ccx = (@{Cyacxyaca:}) Uz
X

D )

#® CSPs: any value in the domain of « can be
extended to a value in the domain of y such that ¢,
IS satisfied

#® Fuzzy CSPs: the preference given to a value for x
by ¢, is the same as that given by (2{c,, czy, cz}) V2

# To achieve SAC: for each x and y, change the
definition of ¢, to make it coincide with
(@] ¢y, cay, ez }) Uz, and iterate fairly until stability




Properties of soft constraint propagation

#® x Idempotent =
s equivalence
s termination
s order-independence
# Some results also for non-idempotent operators

(but we need another operation to compensate for
the additional work)

S. Bistarelli, R. Gennatri, F. Rossi, CP 2000:
T.Schiex, CP 2000




® CSPs: ({0,1},V,A,0,1):
A ldempotent = equivalence, order-independence
and termination

® Fuzzy CSPs: (|0, 1], max, min, 0, 1):
min Idempotent

# Probabilistic CSPs: ([0, 1], max, x,0,1):
x not idempotent

o Weighted CSPs: (R, min, +, +o00,0):
+ not idempotent

10.dO
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SAC on fuzzy CSPs -

® Fuzzy CSPs: (|0,1], max, min,0,1):

a..0.9 a..0.9
b..0.1 b..05
aa...0.8
ab..0.2
ba...0
bb..0

# Combination via min. Example: {(a,a) gets 0.8

# This fuzzy CSP is not SAC:
s ¢; gives0.9toz =a
s (®{cy, cay,c}) o gives it 0.8:
s combination: val({a,a)) = min(0.9,0.8,0.9) = 0.8
and val({a, b)) = min(0.9,0.2,0.5) = 0.2
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10.dO

Global and local preferences .

# Local preferences: over constraints or tuples
# Global preferences: over complete assignments

# Usually knowledge involves both local and global
preferences

o Easy to give, or to check, some solution ratings, but
difficult to assign values to all tuples

# Soft constraint systems can usually handle only
ocal preferences

# Learning technigues to induce (or refine) local
oreferences from global ones

# For example: learning algorithm based on gradient
descent




Hard CSPs plus objective function?

# Same expressive power:

s given a soft CSP, one can get an equivalent hard
CSP with a suitable objective function, and
viceversa

# But: soft constraint propagation on soft CSPs may
generate tighter bounds to be used during the
search
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